INFORME DE ENSAYO
LABE02IE15548
2019-07-19 V1.1
Página 1 de 6

CODENSA S.A. E.S.P.
Carolina Casas Patarroyo
Calle 93 N° 13 - 45, piso 4°, Bogotá D.C.;
606 92 92
8300372-480
S/E San José

Elemento ensayado:
Número de elementos ensayados:
Propósito de los ensayos:
Ensayos realizados:
Fecha de finalización de las pruebas:
Ubicación/Lugar:
Observaciones:

Uno (1) Referencia muestras: N/A
N/A
Simulación Acústica S/E San José
2019-05-27
Laboratorio de Ensayos Eléctricos Industriales
Ninguna.

El resultado sólo se aplica para el elemento ensayado. Este informe solo podrá reproducirse en su totalidad y con la correspondiente autorización del Laboratorio de Ensayos Eléctricos Industriales FABIO CHAPARRO.

Francisco J. Amorchela G.
Ing. FRANCISCO J. AMORTEGUI G.
Jefe Técnico de Ensayos - LABE
Universidad Nacional de Colombia

ESTE DOCUMENTO SOLO TIENE VALIDEZ EN ORIGINAL Y COMPLETO
ANÁLISIS DE RUIDO EN SUBESTACIÓN SAN JOSÉ USANDO EL MÉTODO DE ELEMENTOS FINITOS

En este documento se plasma el informe final de actividades respecto a la simulación de Ruido Acústico en la Subestación San José, propiedad de CODENSA S.A. E.S.P. La Subestación San José, ubicada en la localidad 17 La Candelaria de la ciudad de Bogotá, hace parte de los proyectos de CODENSA S.A. E.S.P. que buscan contribuir al fortalecimiento de la confiabilidad y estabilidad del sistema eléctrico de Bogotá y Cundinamarca. El objetivo de este proyecto es encontrar los niveles de ruido al interior de la subestación y sus alrededores para verificar el cumplimiento de los límites establecidos en la Resolución 8321 de 1983 del Ministerio de Salud, sobre niveles y métodos de medición de ruido de emisión, Decreto 948 de 1995 sobre protección, prevención y control de ruido que trascienda al espacio público, y la Resolución 627 de 2006 del Ministerio de Ambiente, Vivienda y Desarrollo Territorial.

A partir de la documentación, tanto de la geometría como las características sonoras de los equipos, entregada por parte de CODENSA S.A. E.S.P., se ha construido el modelo de subestación que se encuentra en las Figuras 1 y 2.

Se han tomado como fuentes acústicas principales, los transformadores de 115 - 57,5 kV / 11,4 kV, a los cuales, según la tabla de datos, se les ha asignado una presión acústica omnidireccional correspondiente a 76,1 dB cada uno.

![Figura 1. Vista 3D S/E San José.](image)

El software utilizado es COMSOL, el cual está diseñado para análisis por medio de elementos finitos. Con él se puede obtener una respuesta comparable con la realidad para los lugares de permanencia del público en general, es decir a decámetros de los componentes energizados.
En la Figura 3 se presentan los niveles acústicos en el interior de la subestación y sus alrededores inmediatos.

1. PRESIÓN ACÚSTICA

La simulación fue distribuida en diferentes secciones para analizar al detalle cada parte crítica del sistema, y así poder determinar la influencia del fenómeno acústico en los lugares pertenecientes a la subestación y sus alrededores.

Para la ejecución de la simulación, se ha definido una malla con elementos tetraédricos con dimensiones ajustables de acuerdo con la geometría. El método de elementos finitos utilizado fue basado en un malla de alta densidad. Se realizó la simulación por medio de la ecuación de difusión acústica que comprende resultados congruentes para las distancias correspondientes a la exposición del público con comprobaciones prácticas realizadas para la confirmación del método.

Dentro de los parámetros que definen la simulación son los valores de emisión de los transformadores este valor fue suministrado por CODENSA correspondiente a 60 dB con el filtro de ponderación frecuencial audible tipo A. De acuerdo con las mediciones de espectro del ruido emitido por un transformador experimentalmente se obtiene que su componente del tercio de octava con frecuencial central de 125Hz y 630 son los componentes predominantes en orden de magnitud, el cual supera todos sus armónicos por, al menos, 9 décíbeles, es decir, 8 veces más presión sonora de está misma.
A continuación, se presenta los niveles de presión acústica ante la excitación de una fuente de dominio en los transformadores de 76,6 dB, valor correspondiente a 60 dBA para la banda centrada en 125 Hz y otra de 63,2 dB, valor correspondiente a 60 dBA para la banda centrada en 630 Hz. Las dos frecuencias fueron tomadas de acuerdo a la caracterización experimental del ruido de un transformador y tomando los lineamientos del estándar IEEE C57-12-90 en el que se especifica que las pruebas de ruido audible en un transformador se deben realizar con la ventilación forzada encendida.

Figura 3. Nivel de presión acústica en los alrededores de la subestación San José (Mapa de colores) junto a la isolínea correspondiente a 71,6 dB sin el filtro de ponderación frecuencial audible tipo A. Aplicando el filtro de ponderación frecuencial audible tipo A (restando 16,6 dB) se evidencia que los niveles de presión acústica no superan los 50 dBA en la zona externa a la Subestación San José.
De acuerdo con los estándares máximos permisibles de niveles de emisión de ruido (expresados en decibeles dB (A)), indicados en la Resolución 627 de 2006 del Ministerio de Ambiente, Vivienda y Desarrollo Territorial, se extraen los datos mostrados en Tabla 1 del Anexo de este informe, indicando que los niveles máximos permisibles para este tipo áreas residenciales, corresponden a 55 dB en horarios nocturnos.

Las condiciones con las que se simuló corresponden a una temperatura de 20°C la cual relaciona una velocidad del sonido de 340 m/s.

CONCLUSIONES

Con el modelamiento y la simulación realizada para determinar el efecto acústico en la subestación San José, propiedad de CODENSA S.A. E.S.P., se encontró que el comportamiento de la presión acústica emitida por la Subestación San José se encuentra dentro de los niveles establecidos por la Resolución 627 de 2006 del Ministerio de Ambiente, Vivienda y Desarrollo Territorial, para una clasificación de Sector B – Zonas residenciales parque en zonas urbanas diferentes a los parque mecánicos al aire libre dada la clasificación en Plan de Ordenamiento Territorial (POT)

Se puede identificar que en el encerramiento de la subestación se obtiene un valor de presión acústica con filtro ponderado tipo A de 55 dBA.

Es importante considerar que los niveles de intensidad acústica son susceptibles a cambios por condiciones adicionales de ruido ambiental que dependen de las construcciones aledañas existentes.

Esta simulación fue realizada con parámetros suministrados por parte de CODENSA S.A. E.S.P. sobre los transformadores, los cuales son la fuente de presión acústica contemplada (60 dBA a un metro de distancia del segmento más angosto del transformador).

2. INFORMACIÓN ADICIONAL DEL INFORME

<table>
<thead>
<tr>
<th>Encargado</th>
<th>Ing. David Nova Rodríguez</th>
<th>Supervisor</th>
<th>Ing. Francisco Javier Amórtegui</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentes</td>
<td>Ricardo Poveda</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ensayo/sesión</th>
<th>Referencia LABE</th>
<th>Fecha</th>
<th>Hora inicio</th>
<th>Hora final</th>
<th>Temperatura ± 0,6 [°C]</th>
<th>Humedad relativa ± 3 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulación de ruido</td>
<td>NO APLICA</td>
<td>2019-07-01</td>
<td></td>
<td></td>
<td>NO APLICA</td>
<td>NO APLICA</td>
</tr>
</tbody>
</table>

Tabla 1. Condiciones ambientales durante la prueba.
3. RESPONSABLES

Ing. FRANCISCO J. AMÓRTEGUI G.
Jefe Técnico de Ensayos - LABE
Universidad Nacional de Colombia

Ing. DAVID NOVA RODRÍGUEZ
Ingeniero de Proyectos - LABE
Universidad Nacional de Colombia

El Laboratorio de Ensayos Eléctricos Industriales (LABE) de la Universidad Nacional de Colombia, preparó este informe bajo contrato para CODENSA S.A. E.S.P. LABE NO DA NINGUNA GARANTÍA, EXPRESA O IMPLÍCITA, EN CUANTO A LOS RESULTADOS QUE SE OBTENDRÁN POR ALGUNA PERSONA O ENTIDAD A PARTIR DEL USO DEL CONTENIDO DE ESTE INFORME. LABE no da ninguna garantía expresa o implícita de la comerciabilidad o de la aptitud para un propósito determinado de ninguno de los productos mencionados en este informe. LABE no conserva muestras testigo, por lo tanto, solo garantiza los resultados sobre la muestra o elemento ensayado y en las condiciones ambientales y de montaje señaladas en este informe. Este informe solo podrá reproducirse en su totalidad y con la correspondiente autorización de LABE.

FIN DEL INFORME
Figura 1. Filtro de ponderación frecuencial tipo A.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Subsector</th>
<th>Estándares máximos permisibles de niveles de emisión de ruido en dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector A. Tranquilidad y silencio</td>
<td>Hospitales, bibliotecas, guarderías, sanatorios, hogares geriátricos</td>
<td>Día: 55; Noche: 50</td>
</tr>
<tr>
<td>Sector B. Tranquilidad y ruido moderado</td>
<td>Zonas residenciales o exclusivamente destinadas para el desarrollo habitacional, hotelería y hospedajes.</td>
<td>Día: 65; Noche: 55</td>
</tr>
<tr>
<td></td>
<td>Universidades, colegios, escuelas, centros de estudio e investigación.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parques en zonas urbanas diferentes a los parques mecánicos al aire libre</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 1. Niveles de presión acústica máximos estipulados por la Resolución 627 de 2006 Ministerio de Ambiente, Vivienda y Desarrollo Territorial. (Continúa)

ESTE DOCUMENTO SOLO TIENE VALIDEZ EN ORIGINAL Y COMPLETO

Laboratorio de Ensayos Eléctricos Industriales - LABE
Carrera 30 No. 45 - 03
Edificio 411, Oficina 102C
Bogotá, Colombia
labecbog@unal.edu.co
<table>
<thead>
<tr>
<th>Sector</th>
<th>Subsector</th>
<th>Estándares máximos permisibles de niveles de emisión de ruido en dB(A)</th>
</tr>
</thead>
</table>
| | Zonas con usos permitidos industriales, como industrias en general, zonas portuarias, parques industriales, zonas francas. | Día: 75
Noche: 75 | |
| | Zonas con usos permitidos comerciales, como centros comerciales, almacenes. Locales o instalaciones de tipo comercial, talleres de mecánica automotriz e industrial, centros deportivos y recreativos, gimnasios, restaurantes, bares, tabernas, discotecas, bingos, casinos. | Día: 70
Noche: 60 | |
| Sector C. Ruido Intermedio Restringido | Zonas con usos permitidos de oficinas. | Día: 65
Noche: 55 | |
| | Zonas con usos institucionales. | | |
| | Zonas con otros usos relacionados, como parques mecánicos al aire libre, áreas destinadas a espectáculos públicos al aire libre. | Día: 80
Noche: 75 | |
| Sector D. Zona suburban o rural de tranquilidad y ruido moderado | Residencia suburbana. | Día: 55
Noche: 50 | |
| | Rural habitada destinada a explotación agropecuaria. | | |
| | Zonas de recreación y descanso, como parques naturales y reservas naturales. | | |

Tabla 1. Niveles de presión acústica máximos estipulados por la Resolución 627 de 2006 Ministerio de Ambiente, Vivienda y Desarrollo Territorial. (Continuación)